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Despite the development of numerical methods for solving three-dimensional problems 
of the flow of a viscous gas about bluff bodies, it is still very important to continue to 
develop approximate methods of solving these problems that will yield simple analytic for- 
mulas. Such formulas, not requiring a large expenditure of machine time while providing 
sufficient accuracy, are widely used in performing engineering calculations. Many approxi- 
mate methods have been developed for large Reynolds numbers Re, when flow is studied within 
the framework of boundary-layer theory. However, there are as yet no analogous methods suit- 
able for solving three-dimensional problems of flow about bodies in the case of small Re, 
when viscosity is important over the entire perturbed region of flow. 

The goal of the present investigation, being a continuation of [i], is to obtain simple 
formulas to determine the heat fluxes and shear stresses in the neighborhood of the plane 
of symmetry of bodies in a flow with an angle of attack. The investigation is conducted 
for small and moderate Reynolds numbers on the basis of approximate solution of the equations 
of a three-dimensional viscous shock layer with allowance for slip and the temperature jump 
on the surface. Problems in a similar formulation without allowance for slip were studied 
numerically in [2-5]. 

i. We will examine the three-dimensional flow of a viscous gas about bluff bodies at 
small and moderate Re, when the flow has a plane of symmetry. The flow is studied within 
the framework of a model which is analogous to the widely used two-layer model of a viscous 
shock layer proposed in [6] for axisymmetric flow about a body. The model is based on the 
assumption that the perturbed region of the flow is thin. 

We choose a system of curvilinear orthogonal coordinates (~z, $2, ~) which is normally 
connected with the surface in the flow: $3 = const is the family of surfaces parallel to 
the surface of the body ($3 = O), while ~i andg2 were chosen on the surface in the following manner. 
Let z = f(x, y) be the equation of the body's surface in a Cartesian coordinate system. The 
velocity vector of the incoming flow V~ coincides with the direction of the z axis. The 
coordinate origin is placed at the stagnation point of the flow. We introduce the following 
parametrization of the surface: x = $i, y = $2, z = f(~1, ~2). Let ~2 = 0 be the plane 
of symmetry of the flow. We expand all of the sought functions into series in ~2 in the 
neighborhood of this plane: F(gZ, $2, ~s) = F0($~, Ss) + F2($I, ~3)($2)2 + ... We then 
insert these expansions into the equations of a three-dimensional thin viscous shock layer 
[7]. Keeping two terms in the expansion for pressure and one term in the expansions for 
the remaining functions, we obtain a closed system of equations to describe the flow in the 
neighborhood of the plane of symmetry. In variables of the Dorodnitsyn type, this system 
has the form 
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Here, p~p is density; p~V~2p, pressure; Dp(T0), viscosity; HV~2/2, total enthalpy; TV==/(2c~) 
temperature; V~u~u , physical components of the velocity vector in the directions ~: and g 2~ 
(V~u~ ~ are the physical components of the velocity vector in the incoming flow); Pr, Prandtl 
number; y, ratio of the heat capacities; R, characteristic linear dimension; the indices ~, 
s, and w denote quantities in the undisturbed flow, behind the shock wave, and on the sur- 
face of the body; the indices 1 and 2 with the derivatives of the functions denote the co- 
ordinate (~: or 6 2 ) with respect to which differentiation is performed. 

On the surface of the body, we assign boundary conditions that consider slip velocity 
and the temperature jump [8]: 

a 6~ ( ~ : t ,  2), 
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where O is the coefficient of diffuse reflection; ~ is the accommodation coefficient (in 
the calculations, we took 8 = i, ~ = i). 

We use the generalized Rankine-Hugoniot relations 
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for the shock wave. The friction coefficients in the neighborhood of the symmetry plane 
are calculated from the formulas 

p~VL/2 --  :~X \-s Ao (c~ = t ,  
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The flow of heat to the surface of a body in a flow with slip is due to both conduction 
and friction and consists of two parts: q = %,8T,/85, ~ + ~,u,~Su,~/8~, s (the asterisk denotes 
dimensional quantities). The Stanton number c H is found from the formula 

q (PP)w lOG I -  P r o  lOul~ 

2. Equations (i.i) will be solved by the method of successive approximations. Here, 
the procedures employed are similar to those used in [9, i0]. The method was first proposed 
for two-dimensional boundary-layer problems in [11]. The authors of [9, I0] then developed 
a technique of successive approximation to solve two-dimensional problems of the theory of 
a viscous shock layer. 

The momentum and energy equations are integrated twice over the coordinate ~ (from 
to 1 and from 0 to ~). To solve the resulting system of integrodifferential equations, we 
construct an iterative process in which each successive approximation for the sought functions 
is expressed through the previous approximation so that all of the approximations satisfy 
the boundary conditions both for the body and for the shock wave. The iterative algorithm 
makes it possible to determine any number of approximations for the sought functions if the 
zeroth approximation is somehow given. The algorithm is similar in form to that presented 
in [i0] and is thus not described here. 

In the first approximation of this method, we obtained an analytic solution for pressure, 
the velocity components, the friction coefficients, and the Stanton number: 
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C a l c u l a t i o n s  p e r f o r m e d  w i t h  Eq .  ( 2 . 6 )  a n d  n u m e r i c a l  c a l c u l a t i o n s  p e r f o r m e d  b y  t h e  f i n i t e -  
difference method for bodies of different form showed that at Re ~ 5 the distribution along 
the surface of the heat flux referred to the heat flux at the critical point is only slightly 
affected by allowing for slip and the temperature jump on the surface. The above equations 
can thus be simplified, and we obtain the following simple formula for relative heat flux 
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where H is the mean curvature of the surface at the given point [H = (k I + k2)/2]; k I and 
k 2 are the principal curvatures of the surface at this point; the subscript 0 denotes values 
of the respective quantities at the stagnation point. 

It follows from analysis of (2.5) that with moderate and large Reynolds numbers (Re 
i00), relative heat flux ceases to depend on Re, and Eq. (2.5) takes the form 

= - - -  H = t . '~ ( 2 . 6 )  qo g314 ' 72 7 

The  p r a c t i c a l  a b s e n c e  o f  t h e  d e p e n d e n c e  o f  t h e  d i s t r i b u t i o n  o f  r e l a t i v e  h e a t  f l u x  o v e r  t h e  
surface on Re (at Re ~ i00) was confirmed by numerical calculations. 

3. To evaluate the accuracy of the formulas obtained here, we made a systematic compari- 
son of the analytic solution with a numerical solution obtained using a difference scheme 
of fourth-order accuracy with respect to ~ and second-order accuracy with respect to ~. The 
results of calculations performed with the approximate analytic formulas were compared with 
the results of the numerical calculations in the neighborhood of the plane of symmetry of 
elliptical paraboloids and hyperboloids in flows with angles of attack. The comparison was 
made for a broad range of variation of the governing parameters of the problem: Re changed 
from 1 to i000; the angle of attack ~ changed from 0 to 45~ the temperature factor G w changed 
from 0 to 0.3; y changed from i.i to 1.4. Comparison of the analytic and numerical solutions 
showed the good accuracy of the formulas for pressure, the friction coefficients, and heat 
transfer throughout the investigated ranges of the parameters of the problem. This accuracy 
is evident from Figs. 1-3, for example. These figures show the characteristic distributions 
of these quantities along the surface of an elliptical paraboloid z = (1/2)(x 2 + ky 2) (k = 
0.8) in a flow with angles of attack of 0, 45; 15 and 30 ~ , respectively. Also shown are 
the characteristic distributions of the quantities along the surface of a hyperboloid z = 
(i + x 2 + y2)i/2 _ 1 in a flow with an angle of attack of ~ = 30 ~ (curves i' and 3' in Fig. 3). 
Lines 1-3 correspond to Re = i, I0, and i00. The solid lines show the numerical solution, 
while the dashed lines show the results calculated from Eqs. (2.1), (2.3), and (2.4) for 
Pw, cf l, and c H. Curves i'-4' in Fig. 1 are for ~ = 0. The results are presented for ? = 
1.4, G w = 0.i, and Pr = 0.71. 
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Study of the dependence of the heat flux and shear stress on ~ showed that an increase 
in ~ is accompanied by a shift in these quantities from the critical point in the direction 
of a decrease in the radius of longitudinal curvature of the contour of the body. However, 
the absolute maximum of q and cf z for the given body is reached at the critical point in 
a flow without an angle of attack. Thus, in the case of flow about an elliptical paraboloid 
(k = 0.8) with Re = i00, for ~ = 0, 15, 30, and 45 ~ the maximum values of c H = 0.22, 0.21, 
0.19, and 0.16. 

An analysis of the results we obtainedshowed that the terms containing components of 
the pressure gradient that are tangential to the surface cannot be omitted from the momentum 
equations, since failure to account for them leads to a substantial error in the determina- 
tion of the friction coefficients. This is demonstrated in Fig. 2, where lines 5 show data 
found with the same values of the parameters as for lines 3 - but without allowance for the 
terms containing the tangential components of the pressure gradient. 

As in the case of axisymmetric flows, for small Re the effects of slip and the temperature 
jump on the surface depend appreciably on the distribution of the absolute values of shear 
stress and heat flux on the surface. This is shown in Figs. I and 2 (lines 4 were obtained 
with the same parameters as lines i, but without allowance for slip). Here, the effect of 
slip is manifest to a greater extent in the case of flow about the body with an angle of 
attack on the side relative to the stagnation point where the radius of longitudinal curva- 
ture of the body's contour decreases. 

We also checked the accuracy of simplified formula (2.5) for the heat-flux distribution 
based on the heat flux at the critical point. An example of a comparison of the analytic 
and numerical solutions is shown in Fig. 4 for an elliptical paraboloid (k = 0.8) in flows 
with angles of attack of 0 and 15 ~ and Re = I0 and i00 (curves I and 2). The solid lines 
show the numerical solution, the dashed lines show the results calculated from Eq. (2.5), 
and the dot-dashed lines show the results calculated from Eq. (2.6). The results calculated 
from (2.6), being independent of Re, nearly (to within 1%) agree with the results calculated 
from (2.5) with Re = i00. Thus, at Re ~ I00, Eq. (2.6) can be used to determine q/q0- 

The fact that the distribution of relative heat flux nearly ceases to be dependent on 
Re at Re e I00 is illustrated in Fig. 5, which shows the distributions of q/q0 and cfl/cf01 
along the line of flow on the elliptical paraboloid (k = 0.8, ~ = 30 ~ ) obtained from the 
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numerical solution (solid lines) with Re = i, i0, i00, and 700 (curves 1-4). It is evident 
that, in contrast to q/q0, the distribution of cfl/cf01 in the range i00 ~ Re ~ 700 is still 
appreciably dependent on Re. 

Comparison with the results of a numerical solution for different forms of bodies immersed 
in flows with different angles of attack show the high degree of accuracy of Eq. (2.6). This 
equation expresses the relative heat flux at a given point on the flow line as a function 
of the metric and the mean curvature of the surface at this point when Re Z i00. Examples 
of such a comparison for elliptical paraboloids with k = 0.8, ~ = 0, 15~ k = 0.8, ~ = 30~ 
k = 0.25 and 4 (curves 1 and 2) and ~ = 0 are shown in Figs. 4-6, respectively; the results 
calculated with Eq. (2.6) (dot-dashed lines) agree well with the numerical solution of Eqs. 
(I.i) (solid lines). 

We thank G. A. Tirskii for his participation in useful discussions of our investigation. 
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INVERSE METHOD OF MEASURING ELECTRICAL CONDUCTIVITY 

IN A ROTATING MAGNETIC FIELD 

I. L. Zakharov and Ya. A. Kraftmakher UDC 539.215 

Among the noncontact methods available for measuring electrical conductivity [i], an 
important place is occupied by the method based on the determination of the torque acting 
on a specimen in a rotating magnetic field [2-5]. The specimen, in the form of a sphere 
or cylinder, is suspended on a thin elastic filament. The rotating magnetic field is created 
by means of two- or three-phase current or by the mechanical rotation of coils carrying a 
direct current. The torque acting on the specimen is determined from the angle of twist 
of the filament or by compensating for it. In the former case, a light source, mirror, and 
scale are needed. The electrical conductivity of the specimen is determined by an absolute 
or relative method. In the first case, use is made of the exact solution of the problem 
for a conducting sphere or cylinder in a rotating magnetic field [6]. 

The goal of the present study is to improve the method of measuring electrical conduc- 
tivity in a rotating magnetic field with the specific aim of checking the purity of metals 
from their residual resistivity. The procedure for checking purity is based on the fact 
that at sufficiently low temperatures, the resistivity of metals is determined mainly by 
impurities and lattice defects. This technique is currently widely used. The purity of 
a metal is usually characterized by the ratio of its resistivities at room temperature and 
at the temperature of liquid helium. The main shortcoming of the method which involves the 
use of a rotating magnetic field is that the specimens must be small - usually about 1 cm. 
When it is necessary to study the distribution of impurities along long specimens, the only 
possible means is to cut them into small sections and perform separate measurements for each 
section. This significantly lengthens the time taken up by the measurement process and in- 
creases the consumption of liquid helium. Moreover, this method is more difficult still 
if the specimen has to be in a sealed ampul for the entire period of measurement. 

To overcome these problems, we propose a different method: instead of the torque acting 
on the specimen, determine the torque acting on the coils which create the magnetic field. 
A lightweight platform with coils transmitting a two- or three-phase alternating current 
is suspended on elastic filaments. When the specimen is moved into the space between the 
coils, eddy currents develop in this space. The interaction of these currents with the rota- 
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